Mathematics II

(English course)
Second semester, 2012/2013

Self-test

1. Consider the quadratic form

$$
Q(x, y z)=x^{2}+2 x y+y^{2}+4 y z+5 z^{2}
$$

(a) Find the symmetric matrix A such that

$$
Q(x, y, z)=(x, y, z) A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \forall(x, y z) \in \mathbb{R}^{3}
$$

(b) Classify the quadratic form Q.
(c) Write the characteristic polynomial for the matrix A.
2. Consider the function $f(x, y)=\frac{\sqrt{5-e^{x^{2}+y^{2}}}}{1-\ln \left(x^{2}-y^{2}\right)}$.
(a) Find the domain of f and sketch it.
(b) The domain of f is open? Why?
3. Find the value of $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}-x^{2} y}{x^{2}+y^{2}}$, or show that this limit does not exist.
4. Consider the function $f(x, y)=\frac{\sqrt{1+(x \ln y)^{2}}}{x^{2}+e^{y-1}}$.
(a) Find $\nabla f(x, y)$.
(b) Compute the derivative of f along the vector $(1,-2)$ at the point $(3,1)$.
5. Consider the function

$$
f(x, y)= \begin{cases}\left(x^{2}-y^{2}\right) \ln \left(x^{2}+y^{2}\right), & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0)\end{cases}
$$

(a) Find the function $\frac{\partial f}{\partial x}$.
(b) Show that f is differentiable at the point $(0,0)$.
(c) f is continuous? Why?
(d) Find the set of points where $\frac{\partial f}{\partial x}$ is continuous.
6. Assuming the function $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ is homogeneous of degree -3 and $f(1,3)=\ln 2$, and $\frac{\partial f}{\partial y}(1,3)=-1$, find $\frac{\partial f}{\partial x}(1,3)$.
7. Find the critical points of the function $f(x, y)=e^{x y}\left(x^{2}+y^{2}\right)$, and classify them.
8. Find the maximizers and minimizers of the function $f(x, y)=x^{2}+y^{2}$ on the domain $D=\left\{(x, y):(x+y+2)^{2}+\frac{(x-y)^{2}}{4} \leq 1\right\}$.
9. Compute the following integrals
(a) $\int_{A} x y^{2} d x d y$, with $A=\left\{(x, y): \frac{x^{2}}{2} \leq y \leq x\right\}$.
(b) $\int_{A} \sqrt{1-x^{2}-y^{2}} d x d y$, with $A=\left\{(x, y):\left(x^{2}+y^{2}\right)^{2} \leq x^{2}-y^{2} \leq x\right\}$.
10. Solve the following Cauchy problems:
(a) $y-x y^{\prime}=1+x^{2} y^{\prime}$ with $y(1)=2$,
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{x} \sin x$, with $y(0)=0, y^{\prime}(0)=-2$.

